If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+14x-49=0
a = 7; b = 14; c = -49;
Δ = b2-4ac
Δ = 142-4·7·(-49)
Δ = 1568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1568}=\sqrt{784*2}=\sqrt{784}*\sqrt{2}=28\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-28\sqrt{2}}{2*7}=\frac{-14-28\sqrt{2}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+28\sqrt{2}}{2*7}=\frac{-14+28\sqrt{2}}{14} $
| x3+4x2+6x+130=0 | | x+0.5x=80 | | 0.5x+x÷5=0.25x+7 | | x+4(x^2)=39 | | 5x+(x+9)=48 | | 2x-2=162. | | 4^n=256 | | |x+1|=x-3 | | 2x/x-3+3=6/x-3 | | 21x^+11x-2=0 | | 2y=13/4 | | -5x-16=-3x-36 | | 3/4x-8=14 | | 2x−1=11 | | 28-|2x-5|=2 | | 33=3(3x-1) | | 3(3x+4)-2=46 | | -4x+40=4(5x+4) | | -6x-5=-5x-9 | | -5x+7=-x+23 | | X-2/3=3x-5 | | x-14=2x-7 | | 24=18+2g2g | | 4s-12s+9=0 | | 3m+9=5m+1 | | 2(w+9=28 | | 5y^2–3y=2 | | 5y²–3y=2 | | 10x+40=3x+10 | | 5x+25=3x-9 | | 3a×5=32 | | 2b+5/3b+4=3 |